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On solutions of crack surface opening

displacement of a penny-shaped crack in an
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A simple analytical expression for the surface displacement of a penny-shaped crack in an
elastic cylinder subject to remote tensile loading is proposed based on a modified shear-lag
model. The results are then compared with the dilute solution [1] and those of finite
element calculation. It is found that the present work gives much better result than the
dilute model. C© 2005 Springer Science + Business Media, Inc.

1. Introduction
The problem of an elastic solid containing a penny-
shaped crack subject to remote loading forms an im-
portant part of analytical fracture mechanics. Survey of
early works can be found in the representative books
(e.g., Kassir and Sih [2]). The general treatments are
based on the integral transformation theory and the
complex variable theory. The results are expressed in
the form of integral expressions and only numerical re-
sults are presented. On the other hand, microcracking
is one of the most important damage mechanisms in
engineering materials. To build the constitutive equa-
tions of the microcracking material it is essential to ob-
tain the simple analytical expressions of the variation
of crack surface opening displacement with the remote
loading. Budiansky and O’Connell [1] made an inves-
tigation of an isolated penny-shaped crack in an infinite
elastic medium subject to remote loading by applying
Eshebly’s theorem and the self-consistent method. It is
therefore desired for practical use that a simple expres-
sion for a crack in a finite domain should be provided.

In studying the bridging effect in fiber-reinforced
composites, McCartney [3] formulated an approximate
solution for fiber-bridging and fiber-cracking problems.
In general, his solution may be thought as construction
of an admissible stress field and therefore provides an
upper bound result. A modified shear-lag model was
then proposed based on his work [4, 5]. Here a new
material parameter GI called “interfacial shear modu-
lus” was introduced which describes the influence of
shear deformation in the matrix above the slipping re-
gion. The determination of GI is based on McCartney’s
approximate solution. A preliminary calculation shows
that the new shear-lag model could give a simple ex-
pression for axial stresses and interfacial shear stress

which coincide well with the two-dimensional analysis
[4].

In the present study we first make a precision of the
adopted two-dimensional approximate solution. Then
we make a detailed finite element calculation to verify
the result of modified shear-lag model and generalize
that model to the microcracking problem in one elastic
medium. A comparison with the finite element calcula-
tion shows that the present model provides a very good
approximation for microcracking elastic bodies.

2. Modified shear-lag model
Consider a composite cylinder of length L subject to
remote uniform applied axial stress σ0. The fiber of the
cylinder cracks at z = 0 (Fig. 1). Let σf, uf and σm, um
be the axial stress and displacement in the fiber and the
matrix, R the radius of the fiber, Vf and Vm the volume
fraction of the fiber and the matrix. The axial equilib-
rium equation of the fiber and the matrix become

dσf

dz
+ 2

R
τs = 0 (1a)

d

dz
(Vfσf + Vmσm) = 0 (1b)

The interfacial shear stress τs follows the bilinear law

τs =






GI

R
�, � <

R

GI
τ0

τ0, � ≥ R

GI
τ0

(2)

where � = um −uf, GI is the interfacial shear modulus
which depends on the moduli of the matrix and the fiber.
The determination of GI follows the work of McCartney
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Figure 1 A matrix and broken-fiber composite cylinder model.

[3] and will be outlined later. The axial stress-strain
relation of the fiber and the matrix are written as

σf = Ef
duf

dz
, σm = Em

dum

dz
(3)

where Ef and Em are Young’s moduli of the fiber and
the matrix. The boundary conditions are

(σf)z=0 = 0, (σm)z=0 = P = σ0

Vm
(4a)

(σf)z=L = σ 0
f = Ef

Ec
σ0, (σm)z=L = σ 0

m = Em

Ec
σ0

(4b)

where

Ec = EfVf + EmVm (5)

In the present case we consider only the non-slipping
case. Let τ0 → ∞. The solution of the axial stress of
the fiber and the matrix become

σf = σ 0
f

1 − exp
(− λ

R z
)

1 − exp
(− λ

R L
) (6a)

σm = 1

Vm
(σ0 − Vfσf) (6b)

where

λ =
√

2GI Ec

Vm Em Ef
(6c)

The additional compliance due to cracking can be cal-
culated as

� = 2

Em

∫ L

0

(
σm − σ 0

m

)
dz

= 2Vfσ
0
f

Vm Em

(
R

λ
+ exp

(− λ
R L

)

1 − exp
(− λ

R L
)

)

(7)

The determination of λ (thus GI) is based on an energy-
equivalent criterion. The elastic energy released due to
the formation of the crack is given as

�E = π R2

Vf
(σ0� − �fVf) (8)

where�f is the surface energy of the fiber. From the two-
dimensional approximate solution with L/R → ∞
[3]

� = ξ · 2RVfσ
0
f

EmVm

(

1 − 2νmβ

α

)

K (9)

where ξ = 1 in the previous work [3], and

K =






2p

p2 − q2
a1 − b1 < 0

2

p
a1 − b1 = 0

2p

p2 + q2
a1 − b1 > 0

(10)

Here νf and νm are Poisson’s ratios of the fiber
and the matrix, α, β, p, q, a1, b1 are functions of
Ef, Em, νf, νm, Vm and the temperature only [3].

In the two-dimensional approximate solution [3], the
stress-strain relations and the displacement boundary
conditions are approximated in an average sense over
the cross-section of the fiber and the matrix. That is, the
axial displacement fields can be written as independent
of r . Thus

(um)z=0 = 0, (uf)z=0 = u0 (11)

However, from Eshelby’s theorem, the penny-shaped
crack should be opened to an ellipsoid rather than a
disk, that is

(uf)z=0 = u0

√

1 − r2

R2
(12)

Notice that the strain energy change due to the forma-
tion of the crack and thus the value of � is directly
proportional to (u f )z=0. The factor ξ may be modified
as

ξ = 1

π R2

∫

AC

(1 − r2/R2)
1
2 dA = 2

3
(13)

where AC is the cross-sectional area of the crack at
z = 0.
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Comparison of (9) with (7) (L/R → ∞) yields

λ = 1
(
1 − 2νmβ

α

)
ξ K

(14)

The average crack surface opening displacement can
be calculated from �

δ =
(

b

R

)2

�

3. Results
Based on (6) and (14), the axial stress and displacement
fields in the matrix are calculated with one-dimensional

Figure 2 Matrix axial displacement increment �um along z axis. R/b = 0.707, Ef = 98 GN/m2, Em = 207 GN/m2, νf = 0.25, νm = 0.2,
σ0/Ec = 10−3, L/b → ∞. (—): Modified shear-lag model and (◦): Finite element result.

Figure 3 Matrix axial stress σm along z axis. R/b = 0.707, Ef = 98 GN/m2, Em = 207 GN/m2, νf = 0.25, νm = 0.2, σ0/Ec = 10−3, L/b → ∞.
(—): Modified shear-lag model and (◦): Finite element result.

model. Here

�um = 1

Em

∫ z

0

(
σm − σ 0

m

)
dz (15)

The thermal and residual stress effects are neglected
in the calculation. The results are then compared
with finite element calculations (Figs 2 and 3). Here
the solid curves indicate the result of the present
model, and the vacuum dots represent the finite el-
ement result. It is seen that good agreements are
obtained.

With the equivalence of the matrix and fiber proper-
ties, the above shear-lag model is extended to the penny-
shaped crack analysis in one elastic medium. Figs 4 and
5 show the result for δ. It seems that the present model
provides a very good approximation both for infinite
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Figure 4 Variation of crack surface opening displacement δ with crack radius R Ef = Em = 98 GN/m2, νf = νm = 0.25, σ0/Ec = 10−3, L/b → ∞.
(—): Modified shear-lag model, (◦): Finite element result, and (- - -): Model of Budiansky and O’Connell [1].

Figure 5 Variation of crack surface opening displacement δ with crack spacing L . R/b = 0.707, Ef = Em = 98 GN/m2, νf = νm = 0.25,
σ0/Ec = 10−3. (—): Modified shear-lag model, (◦): Finite element result, and (- - -): Model of Budiansky and O’Connell [1].

and finite domains. It is also found that the model of
Budiansky and O’Connell [1] may give quite discrepant
results when the cracks get much closer.
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